Neighborhood based sample and feature selection for SVM classification learning
نویسندگان
چکیده
Support vector machines (SVMs) are a class of popular classification algorithms for their high generalization ability. However, it is time-consuming to train SVMs with a large set of learning samples. Improving learning efficiency is one of most important research tasks on SVMs. It is known that although there are many candidate training samples in some learning tasks, only the samples near planes. Finding these samples and training SVMs with them will greatly decrease training time and space complexity. Based on the observation, we introduce neighborhood based rough set model to search boundary samples. Using the model, we firstly divide sample spaces into three subsets: positive region, boundary and noise. Furthermore, we partition the input features into four subsets: strongly relevant features, weakly relevant and indispensable features, weakly relevant and superfluous features, and irrelevant features. Then we train SVMs only with the boundary samples in the relevant and indispensable feature subspaces, thus feature and sample selection is simultaneously conducted with the proposed model. A set of experimental results show the model can select very few features and samples for training; in the mean time the classification performances are preserved or even improved. & 2011 Elsevier B.V. All rights reserved.
منابع مشابه
Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملClassification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal
The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...
متن کاملSelecting Samples and Features for SVM Based on Neighborhood Model
Support vector machine (SVM) is a class of popular learning algorithms for good generalization. However, it is time-consuming in training SVM with a large set of samples. How to improve learning efficiency is one of the most important research tasks. It is known although there are many candidate training samples in learning tasks only the samples near decision boundary have influence on classif...
متن کاملNeighborhood classifiers
K nearest neighbor classifier (K-NN) is widely discussed and applied in pattern recognition and machine learning, however, as a similar lazy classifier using local information for recognizing a new test, neighborhood classifier, few literatures are reported on. In this paper, we introduce neighborhood rough set model as a uniform framework to understand and implement neighborhood classifiers. T...
متن کاملImproving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA
With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 74 شماره
صفحات -
تاریخ انتشار 2011